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Stability of Driven Systems with Growing Gaps,
Quantum Rings, and Wannier Ladders
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We consider a quantum particle in a periodic structure submitted to a constant
external electromotive force. The periodic background is given by a smooth
potential plus singular point interactions and has the property that the gaps
between its bands are growing with the band index. We prove that the spectrum
is pure point—i.e., trajectories of wave packets lie in compact sets in Hilbert
space—if the Bloch frequency is nonresonant with the frequency of the system
and satisfies a Diophantine-type estimate, or if it is resonant. Furthermore, we
show that the KAM method employed in the nonresonant case produces
uniform bounds on the growth of energy for driven systems.
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1. INTRODUCTION

We study stability of the dynamics of one electron in a 1d periodic struc-
ture with infinitely many open gaps driven by a constant electromotive
force. To be specific we consider two realizations: the Stark-Wannier
problem for a periodic background interaction V ( x ) — V(x + L) defined by
the Hamiltonian
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The stability of a general time dependent system was addressed for
example in refs. 17, 10, 13, 26, 22, 12, and 5. The discussion of stability may
be summarized in the question whether a wave packet can get delocalized
during its time evolution. To answer this one may study the time behavior
of expectations of observables; if the system is periodic in time the spectral
properties of the Floquet operator—i.e., the evolution over one period—
can provide precise information on the stability. To mention one example:
if the periodically time dependent system is confined and unbounded and
the spectrum of its Floquet operator is absolutely continuous then the
energy expectation grows in time for any initial state, so the system is
unstable.

The special case considered here was intensively studied since Wannier
conjectured existence of ladders of eigenvalues; see refs. 19 and 25 for back-
ground on this story. In ref. 7 it was proven that for smooth background
potential VeC2(R)—in fact C1+e—the spectrum of Hs is absolutely con-
tinuous which leads to unbounded growth of the energy for HR(t), see ref. 4.
On the other hand in refs. 3 and 18 a comb of 6' point interactions was
considered. It was shown that this model is physically important, in par-
ticular it describes idealized geometric scatterers. It was proven that the
spectrum has no absolutely continuous component leaving the possibility
of eigenstates, singular continuous spectrum and unbounded energy growth.
Furthermore a conjecture on the essential spectrum was made. See also
ref. 23 for the geometric scatterer aspect and ref. 24 for a second proof of
absence of absolute continuity.

It was argued by Ao(1) that the spectral nature depends on the gap
structure of the periodic background. He conjectured that for gap behavior
AEn = O ( 1 / n a ) one has point spectrum for a<0 at least for "nonresonant"
F and continuous spectrum for a > 0. For a = 0 a phase transition from
pure point to continuous spectrum with growing F is expected—see also
refs. 8 and 9; furthermore the spectral nature seems to depend also on num-
ber theoretical properties of the driving frequency FL. This critical case
corresponds to the driven Kronig-Penney model; another realization of
constant gaps is the—explicitly solvable—forced harmonic oscillator con-
sidered by refs. 17, 20, 11, and 10.

Our contribution, here, is to show stability for V a comb of 6' interac-
tions plus a smooth bounded background. We prove that the spectrum of
Hs is pure point; HR is periodic up to a gauge transformation, the Floquet
Hamiltonian of the transformed problem is unitarily equivalent to Hs, its

and an electron on a conducting ring in the plane threaded by a linearly
increasing magnetic flux line P(t) = Ft whose dynamics is defined by
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spectrum is also pure point. We are able to prove this in two different
settings. Firstly for a large subset of frequencies FL which do not resonate
with the frequencies of the background we use a KAM algorithm in order
to treat the d' interaction as perturbation of the decoupled problem where
d' is replaced by a Neumann boundary condition. This algorithm needs as
input a matrix which has sufficient off diagonal decay. Because of the
singularity of the interaction it is not evident that the Floquet Hamiltonian
considered here has such a matrix representation. A detailed spectral
analysis is necessary to show that this is the case. Technically the basic
observation is that the eigenfunctions do not concentrate at the singularity
if the band index grows. A consequence is that the gaps are increasing and
the transition matrix has the required properties. This result was announced
in ref. 2. In the second case for the countable set of resonant frequencies
we prove the conjecture of refs. 3 and 18 concerning the location of the
essential spectrum; a general argument based again on the off-diagonal
decay of matrix elements allows to conclude that also in this case the
spectrum is pure point.

These results strongly suggest that in the models considered here, in
fact for a < 0 in the Ao language and for reasonable boundedness of the
transition matrix, pure pointness of the spectrum should not depend on
number theoretical properties of the frequency!

The fact that the spectrum of the Floquet operator is pure point—in
the HR picture—does not imply on general grounds that the energy expec-
tation is bounded in time as the example in ref. 14 shows. We prove here
that applicability of the KAM method provides a uniform bound on the
energy growth, so this applies here to the nonresonant case and holds true
for a subclass of general time dependent Hamiltonians studied in refs. 22
and 26 which complements their results.

The organization of the paper is as follows. In Section 2 we fix nota-
tions, define the problem in detail and provide a regularization necessary
for the methods in the following sections to work. Section 3 is devoted to
the study of the nonresonant case; the result on pure pointness is Corol-
lary 3.3, the bounds on energy growth are Corollary 3.4 and Theorem 3.5.
In Section 4 we determine the essential spectrum and prove pure pointness
in the resonant case.

2. THE PROBLEM AND ITS MATRIX REPRESENTATION

We consider the class of potentials
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where V : = DX — Ft; we use, however, the time dependent gauge transfor-
mation exp( — iFtx) to transform the propagator into the periodic one of
period T generated by the Hamiltonian

The Hamiltonian for the driven ring is informally:

defined on

with W(x)=W(x + L) a differentiate multiplication operator on L2(R)
and 6' defined by the expressions (1) below. We refer to ref. 3 and references
therein for background material on this model.

The limit B -> i represents decoupling of the cells by a Neumann
boundary condition. For B large the problem is a perturbation of the
decoupled case, but only in the quadratic form sense. We shall show in this
chapter that in spite of the singular character of the perturbation the
problem can be represented by a matrix operator with polynomial off-
diagonal decay. Let us fix

Notations. L, F, B are positive numbers. We shall, however, mostly
work with the parameters w: = FL, g : = 1 / B and employ the symbols
T:=2n/FL for the Bloch period; D:=—id where 9 denotes a partial
derivative; DM(OM) for the diagonal (off-diagonal) part of a matrix M;
X for the binary code defined by x(True) := 1, /(False) : = 0; cte for a
generic constant, independent of the parameters, which may change from
line to line. Hn denotes a Sobolev space of order n. We shall try to avoid
to note the dependence of parameters of a quantity if we feel that this is
possible while keeping clarity.

The Stark-Wannier Hamiltonian is
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Notice that because the domain is t dependent an argument for existence
of the propagator is needed. This will be shown by mapping the problem
to one whose propagator is known to exist, see Remark 2.3 at the end of
this section.

We shall henceforth study the point spectrum of the Floquet
Hamiltonian

acting in L2((0, T), dt; L2((0, L), dx)) on the domain

D(K) = {i e H 1 ( 0 , T), D(H(t, w, g)), i ( T , x) = A(0, x))}

An eigenvector p of K with eigenvalue e will provide us with a Bloch
Floquet solution of the Schrodinger equation

which is of the form

with $ periodic in t.
A second reason to introduce K is the unitary equivalence of Hs

and K, see ref. 4:

where UB is the Bloch transformation

The matrix representation M of K is constructed as follows: let { j n ( t ) } n e N

be a periodic orthonormal eigenbasis of H(t): i n ( t + T) = i n ( t ) •



with G(z) = G(z, t , w ) : = < f , R0(z) f>.
In the sequel we make statements for g small enough. This could be

circumvented by the use of an adiabatic technique. We shall not do so as
in Section 3 the smallness of g will be essential anyhow. We obtain

f is in H - 1 ( (0 , L)) so we are in the framework of generalized rank-one per-
turbations; we shall use the results of ref. 27. H(t, w, g) is an analytic family
with constant form domain H1(0, L) for (t, w, g ) e S a t x S a w x C for some
at,aw>0 where S a : = { z e C ; | Imz |<a} . For the resolvent R(z) =
( H - z ) - 1 it holds:

where

we have the representation

So denoting the Neumann decoupled operator (g = 0) by

In the rest of this section we shall study the properties of the eigen-
values En(t, w, g) of H and the coupling matrix < i n , D t f m > .

For i e H 1 ( ( 0 , L ) ) , tj e D(H(t)) we find by integration by parts:

then is a basis of L2((0, T), dt; L2((0, L), dx)). Using < .,. > for the scalar
product in x space we define
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Proof of Lemma 2.2. By Riesz's formula we have with a circle Fn of
length \rn\ centered at (nn/L)2

The reason why the transition matrix decays and eigenvalues stay nearby
upon switching on g is contained in the following auxiliary result.

Lemma 2.2. For 0 e L2((0, L)) and the eigenprojections Pn of H it
holds in the Ci topology and uniformly in n:

Proof. The behavior for large n has to be controlled. We compare H
to the Neumann Laplacian — AN on H2(0, L) with boundary conditions
i ( 0 ) = j ' ( L ) = 0, whose eigenvalues are (nn/L)2. This is done in two steps:
first we compare H(t, w, 0)—which is actually time independent—to — AN

using regular perturbation theory; secondly the difference H(g) — H(g = 0)
is treated using formula (5).

By a Wronskian argument the eigenvalues of H(t, w, 0) are simple and
for n large enough it holds:

furthermore there exists a basis { l n } of eigenfunctions of H with
l n ( t + T ) = in(t), i n eC i ( [0 , T ] x [ w - , w + ]x[0 ,g m a x ] ) such that in
the Ci topology and uniformly in t, w, n:

Theorem 2.1. For g sufficiently small, w in a given interval
[w_,w+ ] c(0, i), T = 2n/w, te [0, T] the operator H(t, w, g) as defined
in Eq. (2) has simple discrete spectrum. For its eigenvalues En = En(t, w, g)
it holds uniformly in t, w, g, n:
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and similarly \\6LRN(z)\\ = O(1 /n] , \<da , RN(z) d h>\ = 0 (1 /n ) for a, b in
{0, L} uniformly for zefn. These estimates are preserved upon differentia-
tion with respect to t, w, g. |

with the notation x A y (x v y) for the minimum (maximum) of x and y.
One finds for example

So the question is reduced to the explicit calculation of ||saR
N|| and

<6a, RNSb>. RN(z) is given by its kernel RN(z) c ( x ) = \ RN(x, y; z) </>(y) dy

uniformly for z e Fn and

To do this we use regular perturbation theory and the fact that the "gaps" of
the Neumann operator are growing. Denote dn :=(n2/L2)((n)2 — (n— 1)2)
and choose n0 such that supw \ \ ( w / L ) x + W\\ <dn0/2; for n>n0 choose a
suitable number M and and \Fn\ :=dn/M. Then it holds for the resolvent
RN of the Neumann Laplacian

Denote by a, b indices which take the values 0 and L. In order to prove
the estimate on Pnf>(a) = < 5 f l , Pnc> by Krein's formula—Eq. (5)—it is
sufficient to show
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To continue with the proof of the theorem for the eigenvalues we show

in the Ci topology. < W> denotes the mean value (1/L) JL
0 W. Indeed by

regular perturbation theory with the notation V:=wx/L + W + g | f > < f | |
it is a corollary of the previous lemma that

With PN
n=(2/L)|cos(nn/L)x><cos(nn/L)x| (n>1) the explicit term of the

approximation follows. From this we infer the assertions concerning the
eigenvalues for n large enough. For the lowest finitely many n we employ
continuity of dmEn and compactness of [w_ , w + ] to deduce ( i i ) .

The eigenfunctions are now constructed as

for any time independent choice of eigenfunctions j0
n of H0. We differ-

entiate HP = EP in the quadratic form sense to get Pmd,Pn =
P m d t HP n / (E n — Em). It follows from Lemma 2.2 for the off-diagonal part:

For the diagonal a calculation using Lemma 2.2 yields

Remark 2.3. The existence of the propagator U ( t , s ) of H(t) is a
corollary of the preceding theorem: denote by J(t) the unitary between
l 2 (N) and L2((0, L)) which maps the nth canonical base vector to l n ( t ) .
Then J - 1 ( t ) ( D t + H ( t ) ) J(t) = Dt + h(t) where the matrix operator h is
defined by



Then there is a de(0, r) such that for y small enough and ||OM||c,0,r <g2

there is a set of good frequencies Q i < Q with measure

The result of the KAM algorithm we need here is:

Theorem 3.1. Let re(0, i) be large enough, Q = [w_, w+] c
(0, i), M = M ( w ) = M * ( w ) a family of matrix operators in I 2 (Zx N) such
that

3. STABILITY FOR NONRESONANT FREQUENCIES

In this section we shall employ the KAM algorithm to diagonalize the
matrix M of the Floquet operator K. M is considered as a perturbation of
its diagonal DM, For generic values of the frequency w the eigenvalues of
DM form a dense subset of the real line.(16) We shall show in Corollary 3.3
that for a large set of "nonresonant" at the spectrum of K is pure point,
in Corollary 3.4 and in Theorem 3.5 that the energy of the system stays
bounded.

In order to measure the decay of matrix elements conAAder the following
Banach algebras (see ref. 15): let r, d > 0, Q < (0, i), < x > : = (1 + x2A1/2,

h is analytic with constant domain so its propagator u(t, s) exists. U is then
given by
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and a unitary family Ui(w) with || Ui||Q,0,s < i such that

Remarks 3.2. (i) In particular M(w) has a basis of eigenfunc-
tions f j which decay polynomially: fj(k) = ( U - 1 ) k j = O(|k — j | - s ) ;

(ii) Actually S = T — cte so 6 can be chosen arbitrarily large if r is
arbitrarily large.

Outline of the Proof. The KAM method in its quantum guise intro-
duced in ref. 6 is by now quite standard. We shall, however, give only a
descriptive proof and refer to ref. 15 and references therein for analytic
details.

The idea is to successively diminish the size of small off-diagonal
elements by unitary transformations. We use the function x ( T r u e ) : = 1 ,
X(False) :=0. Denote the matrices

and define recursively

The idea of this is based on the identity

which by the Lie Schwinger formula

leads to
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Wn is to be estimated by OMn so the second term in OMn +1 will be qua-
dratic in ||OMn||. It is in this estimate where one looses the resonant w
giving rise to small divisors. For each step one proves that for a > 1 and
yn small enough there is an open set Qn + 1cQn with \Qn\Qn + 1\ <cte
rn/(1 - |||e|||) such that for rn + 1 <rn it holds:

here \\\e\\\ estimates the space part of DMn. The bad frequencies are con-
trolled by a diophantine estimate

The growing gap property is then used to show that the contributions to
the measure are summable. Estimating now ||adk

wM|| <ctek \\ W\\k \\M\\ it
follows for rn + 1 <rn with the shorthand || • ||n := || • | |Q n .r n , s

The choice yn = O(1/n u ) , rn = O(1/nv -1) for suitable u, v in estimate
(8) then leads to a quadratic estimate for || Wn\\n +1 :

where the constant c2 is proportional to ||OM||Q,0,r, B = 2u +
v(2a + 1) - T. If ||OM ||Q, 0, T is small enough and r large enough this implies
that || Wn\\ is summable, and that DMn and Un are convergent. |

As a consequence of this and the analysis in Section 2 we obtain that
the spectrum is pure point:

Corollary 3.3. For the Floquet Hamiltonian defined in Eq. (3) it
holds:

K(w, g) has a basis of eignevectors in L2((0, T), dt; L2((0, L), dx))



for l e Q ( H ( 0 ) ) , uniformly for t e R.

where G commutes and is relatively bounded with respect to H(0) and Up

is T periodic and Ci as a bounded operator in L2((0, L), dx);

This does, however, not imply that the energy expectation | < i , H ( t ) l > \ is
bounded, as the example given in ref. 14 shows.

We shall show now that boundedness of the energy is in fact always
ensured in cases where the KAM algorithm used above applies.

Corollary 3.4. For g small enough there exists a set of frequencies
Q ic[w_,w+ ]c(0, i) with | [w_, w + ] \ Q i | = O(^/g) such that for
(weQi and for the propagator U of H(t, w, g) it holds

where V is Ci bounded and 0(1) in g, and h0(w, g)ij := <Ej> diJ. Apply-
ing a version of the superadiabatic regularization as in ref. 21, [ref. 15,
Theorem 3.6] we get that K is unitarily equivalent to an operator of the
same form whose fluctuating part has the property that (m2 — n2)r Vmn is
Ci bounded in l2 uniformly in the parameters for any r > 0. Furthermore,
by Theorem 2 the diagonal elements still satisfy (en + 1 — e n ) /n>cte>0 and
0 < dw

en < 1 for g small enough.
Finally going to the Fourier representation K turns out to be unitarily

equivalent to a matrix M on l2(Z x N) which has the properties required
in Theorem 3.1. |

By pure pointness of a(K) every trajectory {teR; U ( t ) l } generated
by H is a precompact set. It follows that

on L2((0, T), dt; l 2(N)) , which is of the form

provided g is small enough and w eQi C [w_, w + ] the set constructed in
Theorem 3.1 with measure \ [ w _ , w + ] \ Q i \ = O(^/g).

Proof. Identifying L2((0, L), dx) with 12(N) via the eigenbasis { ( l n }
of H constructed in Theorem 2.1 we find that K is unitarily equivalent to
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Proof. Application of the KAM algorithm to the matrix M of K gave
U i M U - 1 = Mi. We transform back to the space of (t, x) functions using
the basis {pj} whose space part is { l j 2} as constructed in Theorem 2.1.
Denote

By construction Ui is a Toeplitz matrix in the indices corresponding to the
Fourier variable, i.e., (Ui)jk is of the form (Ui)j1-k1, j2, k2. Consequently
F i is fibered, i.e., , T i l ( t , x ) = T i ( t ) i ( t , x ) for T i ( t ) unitary, periodic
and Ci bounded in L2((0, L), dx); ( M i ) J j = wj1 + ei

j2 with ei
j2 - < E j 2 > =

O(g) uniformly in n, w. The reader may consult ref. 15 for a more detailed
discussion of this point. By Theorem 3.1 this results in

where Hi is defined by (Dt + H i ( t ) ) lm(t) = e i
m l m ( t ) . Denote

then the relation

holds on D ( H ( 0 ) ) so with the definition G : = £e i
mPm(0) we obtain

This formula implies the asserted form for the propagator with the
definition U p ( t ) : = T - 1 U A ( t ) and the fact that UA is Ci bounded by
Theorem 2.1, furthermore it shows that Up preserves domains:
U p ( t ) D ( H ( 0 ) ) c D ( H ( t ) ) .

For i in the form domain of H(0) it holds with (p := U-1
p(0)A

which is bounded uniformly in time as (Up
 - 1 ( D t U p ) ) is periodic. |



An approximation of En was worked out in Eq. (6). Let g n ( t ) =
gn( t + T): = Jo (4g/L)( — 1) n+1 cos ws ds, G the gauge transformation
defined by Gnm(t) = e x p ( i g n ( t ) ) Snm. Now

provided g is small enough and ca e Qi c [w_, w + ] c (0, i), the set con-
structed as in Theorem 3.1 with measure | [w_,w + ]\Qi| = O(^/g).

Proof. By ref. 15 the KAM algorithm is applicable, so we can
proceed as in the previous corollary and find Up, G with U(t) =
U p ( t )e - i G t U - 1

p (0) . |

4. STABILITY FOR RESONANT FREQUENCIES

In this section we shall show that for resonant frequencies w> e Q(L/n)2

the spectrum of K is still pure point.
It is equivalent to show that the time T map U(T) of H has pure point

spectrum. We go to the matrix representation of Section 2. Let { j n } be the
basis found in Theorem 2.1, {en} the standard basis of l2 and J = J(t, w, g)
the unitary operator J: = £i

0 |en><ln|. We have

By the same method we complement now the results of ref. 26 which
were much extended in refs. 5 and 22. These authors estimate the
propagator by time dependent methods to discuss stability of the energy
expectations. The spectral method used here is better suited to provide
bounds valid on an infinite time scale. The differentiability properties on
the potential could be relaxed. However, we do not make an effort, here,
to do so.

Theorem 3.5. Let T, g>0, W a T periodic Ci function with
values in the bounded operators on a Hilbert space. Consider H0 =
£n EnPn with growing gaps: (En + 1- En)/na > cte > 0 for an a > 0.

Then it holds for the propagator U of H(t) := H0 + gW(t), l e Q(H0):
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by Theorem 2.1 the matrix function on the right hand side is a Ci function
in the Hilbert Schmidt norm \\a\\Hs :=(Znm |anm|2)1/2 and a forteriori in
the compact operators on 1 2 (N) . We now make use of the argument of EnB
and Veselic to conclude:

Theorem 4.1. For weQ(L/n) 2 , g small enough, T=2n/co it holds

Proof. Denote h := GhG-1 + G ( D t G - 1 ) , h0:=((nn/L)2+ w/2 +
< W> +4g/L)x(n = m) and by U, U0 their propagators. The spectrum

is a discrete set. Furthermore

is compact for every s, te R. By Theorem 5.2 of ref. 17 U(T)— U0(T) is
compact. So aess(U(T))-aess(U0(T)), which cannot contain continuous
spectrum so a ( U ( T ) ) is pure point. G(T) = 0, from the unitary equivalence

we conclude that the spectrum of U( T) is pure point. |
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